**Module I(Functions and Limits)**

0.2: Functions and their Graphs Definition of a Function, Describing Functions, Evaluating Functions, Finding the Domain of a Function, The Vertical Line Test, Piecewise Defined Functions, Even and Odd Functions (quick review).

0.4: Combining functions Arithmetic Operations on Functions, Composition of Functions, Graphs of Transformed Functions , Vertical Translations, Horizontal Translations, Vertical Stretching and Compressing, Horizontal Stretching and Compressing, Reflecting.

1.1: Intuitive introduction to Limits A Real Life Example, Intuitive Definition of a Limit, One Sided Limits, Using Graphing Utilities to Evaluate Limits.

1.2: Techniques for finding Limits Computing Limits Using the Laws of Limits, Limits of Polynomial and Rational Functions, Limits of Trigonometric Functions, The Squeeze Theorem.

1.3: Precise Definition of a Limit ε − δ definition,A Geometric Interpretation, Some illustrative examples.

1.4: Continuous Functions Continuity at a Number, Continuity at an Endpoint, Continuity on an Interval, Continuity of Composite Functions, Intermediate Value Theorem.

1.5: Tangent Lines and Rate of change An Intuitive Look, Estimating the Rate of Change of a Function from Its Graph, More Examples Involving Rates of Change, Defining a Tangent Line, Tangent Lines, Secant Lines, and Rates of Change.

2.1: The Derivatives Definition, Using the Derivative to Describe the Motion of the Maglev, Differentiation, Using the Graph of f to Sketch the Graph of f′ Differentiability, Differentiability and Continuity.

.4: The role of derivative in the real world Motion Along a Line, Marginal Functions in Economics.

2.9: Differentials and Linear Approximations increments, Differentials, Error Estimates, Linear Approximations, Error in Approximating ∆y by dy.

**Module II**

(Applications of the Derivative)

(Applications of the Derivative)

3.1: Extrema of Functions Absolute Extrema of Functions, Relative Extrema of Functions , Fermat’s Theorem , Finding the Extreme Values of a Continuous Function on a Closed Interval, An Optimization Problem.

3.2: The Mean Value Theorem Rolle’s Theorem, The Mean Value Theorem, Some Consequences of the Mean Value Theorem, Determining the Number of Zeros of a Function.

3.3: Increasing and Decreasing Functions definition , inferring the behaviour of function from sign of derivative, Finding the Relative Extrema of a Function, first derivative test.

3.4: Concavity and Inflection points Concavity, Inflection Points, The Second Derivative Test, The Roles of f ′ and f ′′ in Determining the Shape of a Graph.

3.5: Limits involving Infinity; Asymptotes Infinite Limits, Vertical Asymptotes, Limits at Infinity, Horizontal Asymptotes, Infinite Limits at Infinity, Precise Definitions.

3.6: Curve Sketching The Graph of a Function, Guide to Curve Sketching, Slant Asymptotes , Finding Relative Extrema Using a Graphing Utility.

3.7: Optimization Problems – guidelines for finding absolute extrema , Formulating Optimization Problems application involving several real life problems.

**Module III**

**(Integration)**

4.1: Anti derivatives, Indefinite integrals, Basic Rules of Integration, a few basic integration formulas and rules of integration, Differential Equations, Initial Value Problems.

4.3: Area An Intuitive Look, The Area Problem, Defining the Area of the Region Under the Graph of a Function technique of approximation, An Intuitive Look at Area (Continued), Defining the Area of the Region Under the Graph of a

Function precise definition , Area and Distance.

4.4: The Definite Integral Definition of the Definite Integral, Geometric Interpretation of the Definite Integral, The Definite Integral and Displacement, Properties of the Definite Integral , More General Definition of the Definite Integral.

4.5: The Fundamental Theorem of Calculus How Are Differentiation and Integration Related?, The Mean Value Theorem for Definite Integrals, The Fundamental Theorem of Calculus: Part I, inverse relationship between differentiation and integration, Fundamental Theorem of Calculus: Part 2, Evaluating Definite Integrals Using Substitution, Definite Integrals of Odd and Even Functions, The Definite Integral as a Measure of Net Change

**Module IV**

( Applications of Definite Integral )

( Applications of Definite Integral )

5.1: Areas between Curves A Real Life Interpretation, The Area Between Two Curves, Integrating with Respect to y adapting to the shape of the region, What Happens When the Curves Intertwine?

5.2: Volume – Solids of revolution, Volume by Disk Method, Region revolved about the x axis, Region revolved about the yaxis , Volume by the Method of Cross Sections .

5.4: Arc Length and Areas of surfaces of revolution Definition of Arc Length, Length of a Smooth Curve, arc length formula , The Arc Length Function , arc length differentials , Surfaces of Revolution, surface area as surface of revolution.

5.5: Work Done by a Constant Force, Work Done by a Variable Force, Hook’s Law, Moving non rigid matter, Work done by an expanding gas.

5.7: Moments and Center of Mass Measures of Mass, Center of Mass of a System on a Line, Center of Mass of a System in the Plane, Center of Mass of Laminas.